

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

CHEMISTRY 0620/03

Paper 3 (Extended)

October/November 2007

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
Total					

This document consists of 13 printed pages and 3 blank pages.

1 A list of techniques used to separate mixtures is given below.

For
Examiner's
Use

fractional distillation	simple distillation	crystallization	filtration	diffusion
From the list choo	ose the most suitable t	echnique to separate	the following.	
water from aqueo	ous copper(II) sulphate	e		
helium from a mix	xture of helium and ar	gon		
copper(II) sulpha	ate from aqueous copp	per(II) sulphate		
ethanol from aque	eous ethanol		•••••	
barium sulphate f	from a mixture of wate	er and barium sulphat	te	[5]

[Total: 5]

© UCLES 2007 0620/03/O/N/07

2 The table below gives the number of protons, neutrons and electrons in atoms or ions.

For Examiner's Use

particle	number of protons	number of electrons	number of neutrons	symbol or formula
Α	9	10	10	¹⁹ ₉ F ⁻
В	11	11	12	
С	18	18	22	
D	15	18	16	
E	13	10	14	

(a)	Complete the table. The first line is given as an example.	[6]
(b)	Which atom in the table is an isotope of the atom which has the composition 11p, and 14n? Give a reason for your choice.	11e
		[2] I: 8]

3	Mag	ınes	ium reacts with bromine to form magnesium bromide.
		the the	gnesium bromide is an ionic compound. Draw a diagram that shows the formula of compound, the charges on the ions and the arrangement of outer electrons around negative ion. electron distribution of a bromine atom is 2, 8, 18, 7.
			x to represent an electron from a magnesium atom. o to represent an electron from a bromine atom. [3]
	(b)	In tl 1:2.	ne lattice of magnesium bromide, the ratio of magnesium ions to bromide ions is
		(i)	Explain the term lattice.
		(ii)	[2] Explain why the ratio of ions is 1:2.
			[1]
	(iii)	The reaction between magnesium and bromine is redox. Complete the sentences.
			Magnesium is theagent because it has
			electrons.
			Bromine has beenbecause it has
			electrons. [4]
			[Total: 10]

© UCLES 2007 0620/03/O/N/07

		5	
4	Zinc is	extracted from zinc blende, ZnS.	
	dio	c blende is heated in air to give zinc oxide and sulphur dioxide. Most of the sulph xide is used to make sulphur trioxide. This is used to manufacture sulphuric ac me of the acid is used in the plant, but most of it is used to make fertilisers.	
	(i)	Give another use of sulphur dioxide.	
	/::\		[1]
	(11)	Describe how sulphur dioxide is converted into sulphur trioxide.	
			[3]
	(iii)	Name a fertiliser made from sulphuric acid.	
			[1]
		me of the zinc oxide was mixed with an excess of carbon and heated to 1000 $^{\circ}$ c distils out of the furnace.	C.
		$2ZnO + C \rightleftharpoons 2Zn + CO_2$ $C + CO_2 \rightarrow 2CO$	
	(i)	Name the two changes of state involved in the process of distillation.	
			[2]

(ii) Why is it necessary to use an excess of carbon?

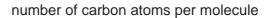
(C)	is el	remaining zinc oxide reacts with sulphuric acid to give aqueous zinc sulphate. This lectrolysed with inert electrodes (the electrolysis is the same as that of per(II) sulphate with inert electrodes). s present: Zn ²⁺ (aq) SO ₄ ²⁻ (aq) H ⁺ (aq) OH ⁻ (aq)		Fo Exam U:
	(i)	Zinc forms at the negative electrode (cathode). Write the equation for this reaction	۱.	
			[1]	
	(ii)	Write the equation for the reaction at the positive electrode (anode).		
		[[2]	
	(iii)	The electrolyte changes from aqueous zinc sulphate to		
		[[1]	
(d) Giv	ve two uses of zinc.		
	1.			
	2.		[2]	
		[Total: 1	5]	

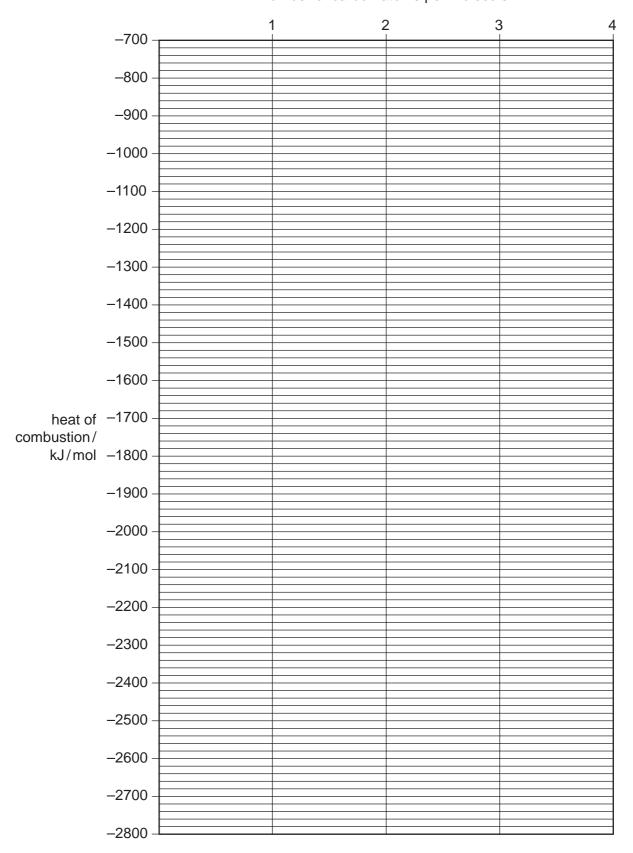
5

Methylamine, CH₃NH₂, is a weak base. Its properties are similar to those of ammonia.								
(a) V	a) When methylamine is dissolved in water, the following equilibrium is set up.							
	$CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^-$ base acid							
(i	Suggest why the arrows are not the same length.							
	[1]							
(ii	Explain why water is stated to behave as an acid and methylamine as a base.							
	[2]							
`´ a	n aqueous solution of the strong base, sodium hydroxide, is pH 12. Predict the pH of aqueous solution of methylamine which has the same concentration. Give a reason r your choice of pH.							
	[2]							
(c) N	ethylamine is a weak base like ammonia.							
(i								
	Methylamine can neutralise acids.							
	Methylamine can neutralise acids. 2CH ₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate							
	$2CH_3NH_2 + H_2SO_4 \rightarrow (CH_3NH_3)_2 SO_4$							
	$\label{eq:2CH3NH2} 2\text{CH}_3\text{NH}_2 \ + \ \text{H}_2\text{SO}_4 \to (\text{CH}_3\text{NH}_3)_2 \ \text{SO}_4$ methylammonium sulphate $\text{Write the equation for the reaction between methylamine and hydrochloric acid.}$							
	$2\text{CH}_3\text{NH}_2 + \text{H}_2\text{SO}_4 \rightarrow (\text{CH}_3\text{NH}_3)_2 \text{ SO}_4$ methylammonium sulphate $ \text{Write the equation for the reaction between methylamine and hydrochloric acid.} $ Name the salt formed.							
(ii	$2\text{CH}_3\text{NH}_2 + \text{H}_2\text{SO}_4 \rightarrow (\text{CH}_3\text{NH}_3)_2 \text{SO}_4$ methylammonium sulphate $ \text{Write the equation for the reaction between methylamine and hydrochloric acid.} $ Name the salt formed.							
(ii	2CH ₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate Write the equation for the reaction between methylamine and hydrochloric acid. Name the salt formed. [2] When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had been							
(iii	2CH ₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate Write the equation for the reaction between methylamine and hydrochloric acid. Name the salt formed. [2] When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had been used instead of iron(II) sulphate?							
	2CH ₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate Write the equation for the reaction between methylamine and hydrochloric acid. Name the salt formed. [2] When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had been used instead of iron(II) sulphate? [1] Suggest the name of a reagent that will displace methylamine from one of its salts, for example methylammonium sulphate.							
	2CH ₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate Write the equation for the reaction between methylamine and hydrochloric acid. Name the salt formed. [2] When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had been used instead of iron(II) sulphate? [1] Suggest the name of a reagent that will displace methylamine from one of its salts, for example methylammonium sulphate.							

6	The alcohols	form	a h	nomologous	series.	The	first	four	members	are	methanol,	ethanol,
	propan-1-ol a	nd but	an-	·1-ol.								

(a) One characteristic of a homologous series is that the physical properties vary in a predictable way. The table below gives the heats of combustion of the first three alcohols.


alcohol	formula	heat of combustion in kJ/mol
methanol	CH₃OH	-730
ethanol	CH ₃ -CH ₂ -OH	-1370
propan-1-ol	CH ₃ -CH ₂ -CH ₂ -OH	-2020
butan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	


(i)	The minus sign indicates that there is less chemical energy in the products that the reactants. What form of energy is given out by the reaction?	ı in
		[1]
(ii)	Is the reaction exothermic or endothermic?	
		[1]
(iii)	Complete the equation for the complete combustion of ethanol.	
	C_2H_5OH + $O_2 \rightarrow$ +	[2]

© UCLES 2007

(iv) Determine the heat of combustion of butan-1-ol by plotting the heats of combustion of the first three alcohols against the number of carbon atoms per molecule.

For Examiner's Use

The heat of combustion of butan-1-ol = _____kJ/mol [3]

	(v)	Describe two other characteristics of homologous series.	For Examiner's Use
(b)		[2] re the name and structural formula of an isomer of propan-1-ol.	
(c)	nar Me	me[2] thanol is made from carbon monoxide.	
	C	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ the forward reaction is exothermic	
	(i)	Describe how hydrogen is obtained from alkanes.	
		[2]	
	(ii)	Suggest a method of making carbon monoxide from methane.	
	(iii)	Which condition, high or low pressure, would give the maximum yield of methanol? Give a reason for your choice.	
(d)	For	reason [2] each of the following predict the name of the organic product.	
	(i)	reaction between methanol and ethanoic acid	
	(ii)	oxidation of propan-1-ol by potassium dichromate(VI)	
	(iii)	removal of H_2O from ethanol (dehydration) [1]	
		[1] [Total: 20]	

7 (a) A small piece of marble, calcium carbonate, was added to 5 cm³ of hydrochloric acid at 25 °C. The time taken for the reaction to stop was measured.

For Examiner's Use

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

Similar experiments were performed always using 5 cm³ of hydrochloric acid.

experiment	number of pieces of marble	concentration of acid in mol/dm ³	temperature/°C	time/min
1	1	1.00	25	3
2	1	0.50	25	7
3	1 piece crushed	1.00	25	1
4	1	1.00	35	2

Explain each of the following in terms of collisions between reacting particles.

(i)	Why is the rate in experiment 2 slower than in experiment 1?	
		 [2]
(ii)	Why is the rate in experiment 3 faster than in experiment 1?	
		 [2]
iii)	Why is the rate in experiment 4 faster than in experiment 1?	
		 [2]

(b)		ternative method of measuring the rate of this reaction would be to measure the ne of carbon dioxide produced at regular intervals.
	(i)	Sketch this graph
	volu	
		time
	/::\	[2]
	(ii)	One piece of marble, 0.3 g, was added to 5 cm ³ of hydrochloric acid, concentration 1.00 mol/dm ³ . Which reagent is in excess? Give a reason for your choice.
		mass of one mole of CaCO ₃ = 100 g
		number of moles of CaCO ₃ =
		number of moles of HC1 =
		eagent in excess is
		eason [4]
	(iii)	Use your answer to (ii) to calculate the maximum volume of carbon dioxide produced measured at r.t.p.
		[1]

[Total: 13]

© UCLES 2007

BLANK PAGE

14

BLANK PAGE

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

						l			
	0	4 He Helium	2	_ ∞	84 Kr Krypton 36	131 Xe Xenon	Radon 86		175 Lu Lutetium
	IIA		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium
	IN								169 Tm Thullum
	>								167 Er Erbium
	2						207 Pb Lead		165 Ho Holmium
	≡								162 Dy Dysprosium
				ı	65 Zn Zinc 30	112 Cd Cadmium 48			159 Tb
									157 Gd Gadolinium
dno									152 Eu Europium
Gro							192 Ir Iridium		150 Sm Samarium
		1 H Hydrogen			56 Fe Iron	Ru Ruthenium	190 Os Osmium 76		Pm
			1		Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten		141 Pr
					51 V Vanadium 23	93 Nb Niobium	181 Ta Tantalum		140 Ce
					48 Ti Titanium	91 Zr Zirconium 40	178 H Hafnium 72		
					45 Sc Scandium 21	89 ≺ Yttrium	139 La Lanthanum *	227 AC Actinium †	series eries
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium	133 CS Caesium 55	Fr Francium 87	58-71 La 90-103 A
	Group	Group	Group	III IV V VI VII VI		III IV V VI VI V VI VI	III IV V VI V	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1

500														
poid corios	140	141	144		150	152			162	165	167		173	175
niola series sid series	ပီ	Ŗ	P	Pm	Sm	Ш			۵	웃	ш		Υb	'n
מבוופס	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
a = relative atomic mass	232		238											
X = atomic symbol	두	Ра	_	N D	Pu	Am		æ		Es		Md		ئ
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).